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Convolutional networks are dominant

C3D [ICCV 2015]

S3D [ECCV 2018]

I3D [CVPR 2017]

SlowFast [ICCV 2019]



What’s missing from convolution?

• Where to focus in images/videos • Long-range dependencies

The same convolutional kernel 
is applied at every position.

Long-range dependencies are 
modeled by large receptive fields. 

Photo credit: [Convolution arithmetic] [Receptive field arithmetic]

https://arxiv.org/pdf/1603.07285.pdf
https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807


Attention is complementary to convolution

• Map-based Attention • Dot-product Attention

Where to focus: learn a pointwise
weighting factor for each position

Attention is All You Need [NeurIPS 2017]CBAM [ECCV 2018]

Long-range dependencies: compute pairwise
similarity between all the positions



Many design choices need to be determined 
to apply attention to videos

• What is the right dimension 
to apply attention to videos?

Challenge:

• How to compose multiple 
attention operations?
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Three dimensions in video data: 
spatial, temporal or spatiotemporal?
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Sequential, parallel, or others?



Automatically search for attention cells in a 
data-driven manner

Proposal:
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Novel Attention Cell Search Space Efficient Differentiable Search Method



Attention Cell Search Space
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Attention Cell
• Composed of multiple attention operations
• Input shape == output shape; can be inserted 

anywhere in existing backbones

Search Space
• Cell Level Search Space: Connectivity 

between the operations within the cell
• Operation Level Search Space: Choices 

to instantiate an individual attention 
operation



Cell Level Search Space
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Input to the cell

Output of the cell

• Input to the 1"# operation is fixed to
• Input to the $#% operation is a weighted 

sum of selected feature maps from 

Select input to each operation

Combine
• Concatenate channels + CONV



Operation Level Search Space

Dot-product 
Attention

Map-based 
Attention

Attention Operation TypeAttention Dimension
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1. Spatial  2. Temporal  3. Spatiotemporal



Map-based Attention and Dot-product Attention

Map-based 
Attention

Dot-product 
Attention

Where to focus: learn a pointwise
weighting factor for each position

Long-range dependencies: compute pairwise
similarity between all the positions

Assume attention dimension = temporal



Search Space Summary

• Spatial
• Temporal
• Spatiotemporal

Attention Operation TypeAttention Dimension

• Map-based attention
• Dot-product attention

• Input to each operation

Connectivity between Operations

Op1

Op2Op3

Combine

• None
• ReLU
• Softmax
• Sigmoid

Activation Function



Insert Attention Cells into Backbone Networks

Attention Cell
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Differentiable Formulation of Search Space

• Search algorithm: differentiable architecture search
• Search cost: equals to the cost of training one network

Map-based Attention

Dot-product Attention

Solid connection (no weights)

Level connection weights

Sink connection weights
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Supergraph and Connection Weights

Map-based Attention

Dot-product Attention

Solid connection (no weights)

Level connection weights
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Supergraph: ! levels; each level " nodes

Node: an attention operation of a pre-
defined attention dimension and type



Differentiable Search

• Jointly train the network weights and connection weights with gradient descent
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Attention Cell Design Derivation

Map-based Attention

Dot-product Attention

Solid connection (no weights)

Level connection weights

Sink connection weights
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How to derive the attention cell 
design from the learned weights?



Attention Cell Design Derivation
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Choose top ! (e.g., 3) 
nodes based on



Attention Cell Design Derivation

Map-based Attention

Dot-product Attention

Solid connection (no weights)

Level connection weights

Sink connection weights
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Choose top ! (e.g., 2) predecessors of each selected code 
recursively based on            until we reach the first level



Attention Cell Design Derivation

Map-based Attention

Dot-product Attention

Solid connection (no weights)

Level connection weights

Sink connection weights
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Experimental Setup

• Backbones
• Inception-based
• Insert 5 cells

• Datasets: Kinetics-600 and Moments in Time (MiT)

I3D [CVPR 2017] S3D [ECCV 2018]



Comparison with Non-local Blocks



Generalization across Modalities

RGB to optical flow



Generalization across Backbones



Generalization across Datasets



Comparison with State-of-the-art



Contributions

• Extend NAS beyond discovering convolutional cells to attention cells

• Search space for spatiotemporal attention cells

• A differentiable formulation of the search space

• State-of-the-art performance; outperforms non-local blocks

• Strong generalization across modalities, backbones, or datasets

• More analysis and visualizations of attention cells available in the paper


