

AttentionNAS: Spatiotemporal Attention Cell Search for Video Classification

Xiaofang Wang, Xuehan Xiong, Maxim Neumann, AJ Piergiovanni, Michael S. Ryoo, Anelia Angelova, Kris M. Kitani, Wei Hua

Carnegie Mellon University

Convolutional networks are dominant

C3D [ICCV 2015]

S3D [ECCV 2018]

Inflated Inception-V1

I3D [CVPR 2017]

SlowFast [ICCV 2019]

What's missing from convolution?

• Where to focus in images/videos

• Long-range dependencies

The same convolutional kernel is applied at every position.

Long-range dependencies are modeled by large receptive fields.

Attention is complementary to convolution

Map-based Attention

$$\mathbf{F}'' = \mathbf{M}_{\mathbf{s}}(\mathbf{F}') \otimes \mathbf{F}'$$

CBAM [ECCV 2018]

Where to focus: learn a pointwise weighting factor for each position

Dot-product Attention

Attention is All You Need [NeurIPS 2017]

Long-range dependencies: compute pairwise similarity between all the positions

Challenge: Many design choices need to be determined to apply attention to videos

• What is the right dimension to apply attention to videos?

Three dimensions in video data: spatial, temporal or spatiotemporal?

• How to compose multiple attention operations?

Sequential, parallel, or others?

Proposal: Automatically search for attention cells in a *data-driven* manner

Novel Attention Cell Search Space

Efficient Differentiable Search Method

Attention Cell Search Space

Attention Cell

- Composed of multiple attention operations
- Input shape == output shape; can be inserted anywhere in existing backbones

Search Space

- **Cell Level Search Space:** Connectivity between the operations within the cell
- **Operation Level Search Space:** Choices to instantiate an individual attention operation

Cell Level Search Space

Select input to each operation

- Input to the 1^{st} operation is fixed to f_0
- Input to the k^{th} operation is a weighted sum of selected feature maps from $\{f_0, f_1, \ldots, f_{k-1}\}$

Combine $\{f_1, f_2, ..., f_K\}$

Concatenate channels + CONV

Operation Level Search Space

1. Spatial 2. Temporal 3. Spatiotemporal

Attention Dimension

Attention Operation Type

Map-based Attention and Dot-product Attention

Assume attention dimension = temporal

Search Space Summary

Insert Attention Cells into Backbone Networks

Differentiable Formulation of Search Space

- Search algorithm: differentiable architecture search
- Search cost: equals to the cost of training one network

Supergraph and Connection Weights

Differentiable Search

• Jointly train the network weights and connection weights with gradient descent

How to derive the attention cell design from the learned weights?

Solid connection (no weights)
Level connection weights w^{level}
Sink connection weights w^{sink}
Map-based Attention
Dot-product Attention

Sink Node **Spatial** Spatial Temporal Temporal Temporal Temporal Spatial Spatial Input

Choose top α (e.g., 3) nodes based on w^{sink}

Choose top β (e.g., 2) predecessors of each selected code recursively based on w^{level} until we reach the first level

Dot-product Attention

Experimental Setup

- Backbones
 - Inception-based
 - Insert 5 cells

• Datasets: Kinetics-600 and Moments in Time (MiT)

Comparison with Non-local Blocks

	· · · ·							
		Kinetic	cs	\mathbf{MiT}				
	Model	Top-1 Top-5	Δ Top-1	Top-1 Top-5	Δ Top-1			
I3D	Backbone [5]	$75.58 \ 92.93$	-	27.38 54.29	-			
	Non-local $[32]$	$76.87 \hspace{0.2cm} 93.44$	1.29	28.54 55.35	1.16			
	Ours	77.86 93.75	2.28	$29.58 \ 56.62$	2.20			
S3D	Backbone [36]	$76.15 \hspace{0.2cm} 93.22$	-	27.69 54.68	-			
	Non-local $[32]$	$77.56 \ 93.68$	1.41	$29.52 \ 56.91$	1.83			
	Ours	$78.51 \ 93.88$	2.36	29.82 57.02	2.13			

Generalization across Modalities

		Kinetics			MiT			
	Model	Top-1	Top-5	Δ Top-1	Top-1	Top-5	Δ Top-1	
I3D	Backbone [5]	61.14	82.77	-	20.01	42.42	-	
	Non-local $[32]$	64.88	85.77	3.74	21.86	46.59	1.85	
	Ours	66.81	87.85	5.67	21.94	45.57	1.93	
S3D	Backbone [36]	62.46	84.59	-	20.50	42.86	-	
	Non-local $[32]$	65.79	86.85	3.33	22.13	46.48	1.63	
	Ours	67.02	87.72	4.56	22.52	46.30	2.02	

Generalization across Backbones

		Kinetics			\mathbf{MiT}			
	Model	Top-1	Top-5	Δ Top-1	Top-1	Top-5	Δ Top-1	
I3D	Backbone [5]	75.58	92.93	-	27.38	54.29	-	
	S3D	77.81	93.74	2.23	29.26	56.61	1.88	
S3D	Backbone [36]	76.15	93.22	-	27.69	54.68	-	
	I3D	78.46	94.05	2.31	29.67	57.05	1.98	
I3D-R50	Backbone [32]	78.10	93.79	-	30.63	58.15	-	
	I3D	79.83	94.37	1.73	32.48	60.31	1.85	
	S3D	79.71	94.28	1.61	31.91	59.87	1.28	

Generalization across Datasets

	Model	MiT to Kin Top-1 Top-5	netics ⊿Top-1	Kinetics to Top-1 Top-5	Δ MiT Δ Top-1
I3D	Backbone [5]	75.58 92.93	-	27.38 54.29	-
	Ours	77.85 93.89	2.27	29.45 56.83	2.07
S3D	Backbone [36]	76.15 93.22	-	27.69 54.68	-
	Ours	78.19 93.98	2.04	29.33 56.33	1.64

Comparison with State-of-the-art

(a) Kinetics-600.

(b) MiT.

Model	Top-1	Top-5	GFLOPs	Model	Top-1	Top-5	Modality
I3D [5]	75.58	92.93	1136	I3D [5]	27.38	54.29	RGB
S3D [36]	76.15	93.22	656	S3D [36]	27.69	54.68	RGB
I3D-R50 [32]	78.10	93.79	938	I3D+NL [32]	28.54	55.35	RGB
D3D [27]	77.90	-	-	S3D+NL [32]	29.52	56.91	RGB
I3D+NL [32]	76.87	93.44	1305	R50-ImageNet [18]	27.16	51.68	RGB
S3D+NL [32]	77.56	93.68	825	TSN-Spatial $[31]$	24.11	49.10	RGB
TSN-IRv2 $[31]$	76.22	-	411	I3D-R50 [32]	30.63	58.15	RGB
StNet-IRv2 $[9]$	78.99	-	440	I3D-R50+Cell	32.48	60.31	RGB
SlowFast-R50 $[7]$	79.9	94.5	1971	TSN-2stream [31]	25.32	50 10	R⊥F
I3D-R50+Cell	79.83	94.37	1034	TRN-Multiscale [40]	28.27	53.87	R+F
				AssembleNet-50 23	31.41	58.33	R+F

Contributions

- Extend NAS beyond discovering convolutional cells to attention cells
- Search space for spatiotemporal attention cells
- A differentiable formulation of the search space
- State-of-the-art performance; outperforms non-local blocks
- Strong generalization across modalities, backbones, or datasets

• More analysis and visualizations of attention cells available in the paper