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Abstract

Hashing is one of the effective techniques for fast
Approximate Nearest Neighbour (ANN) search.
Traditional single-bit quantization (SBQ) in most
hashing methods incurs lots of quantization error
which seriously degrades the search performance.
To address the limitation of SBQ, researchers have
proposed promising multi-bit quantization (MBQ)
methods to quantize each projection dimension
with multiple bits. However, some MBQ meth-
ods need to adopt specific distance for binary code
matching instead of the original Hamming dis-
tance, which would significantly decrease the re-
trieval speed. Two typical MBQ methods Hierar-
chical Quantization and Double Bit Quantization
retain the Hamming distance, but both of them only
consider the projection dimensions during quanti-
zation, ignoring the neighborhood structure of raw
data inherent in Euclidean space. In this paper,
we propose a multi-bit quantization method named
Hamming Compatible Quantization (HCQ) to pre-
serve the capability of similarity metric between
Euclidean space and Hamming space by utilizing
the neighborhood structure of raw data. Extensive
experiment results have shown our approach signif-
icantly improves the performance of various state-
of-the-art hashing methods while maintaining fast
retrieval speed.

1 Introduction

Approximate Nearest Neighbour (ANN) search plays an im-
portant role in many applications such as computer vision and
information retrieval. In recent years there has been growing
interest in hashing techniques for efficient ANN search. The
goal of hashing is to map data points into compact binary
codes whose Hamming distance approximates the similarity.
In hashing, data points are usually represented as short codes,
such as 32 or 64 bits, which are cost effective in data stor-
age. What’s more, under Hamming distance metric, retrieval
speed can be very fast (10° XOR and POPCOUNT operations
per second in modern CPU [He er al., 2013]). Such proper-
ties make hashing an ideal method to handle the ANN search
challenges in big data [Torralba e al., 2008].
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Figure 1: Examples of four quantization methods SBQ, HH,
DBQ and HCQ to quantize the X-axis projection dimension
on a set of 2D random points. A single line indicates the
Hamming distance between two regions is 1, and a double
line indicates 2. This figure is best viewed in color version.

Hashing methods typically involve two stages [Kong and
L, 2012]: projection and quantization. Firstly, data points
are transformed into low dimensional vectors with a linear or
non-linear projection. Secondly, each projection dimension is
quantized into binary code by a quantizer. Most of works fo-
cus on the improvement of the projection stage, with an aim
to find good projection functions. Local Sensitive Hashing
(LSH) [Andoni and Indyk, 2006] adopts a random Gaussian
matrix as projection function. Principle Component Analysis
Hashing (PCAH) [Wang et al., 2006] uses the projection ma-
trix learnt by principal component analysis. Iterative Quan-
tization (ITQ) [Gong and Lazebnik, 2011] figures out an or-
thogonal rotation matrix to refine the initial projection matrix.
Weighted Component Hashing (WCH) [Duan et al., 2015]
utilizes the dependency within each dimensionality to pro-
duce discriminative codes. Other typical projection methods
include RBM [Hinton et al., 2006], SH [Weiss et al., 2008,
KMH [He et al., 2013] and SSH [Wang et al., 2010].

Compared to projection, the quantization stage in hash-
ing has attracted much less attention. Most existing hashing



methods adopt single-bit quantization (SBQ) at the second
stage [Kong and L, 2012], see figure 1. Specifically, given
a projection dimension Y (V) in projected vector Y € RY
(1 <i<q,bY®)is 1if Y is larger than a threshold
6. Otherwise, b(Y () is 0. b denotes the quantizer in SBQ.
SBQ may incur lots of quantization error [Kong and L, 2012],
resulting in poor performance. We argue that quantization is
equally important as projection. A good quantization mecha-
nism may significantly improve the performance [Kong et al.,
2012]. Unfortunately, relatively little efforts were devoted to
better quantization. In this paper, we will perform in-depth
analysis regarding the quantization stage and further improve
the performance of Hashing techniques.

Recently, researchers have attempted to address the limita-
tion of SBQ by proposing multiple bit quantization (MBQ)
methods to reduce the quantization error. Representative
MBQ methods include Hierarchical Quantization (HQ) in
[Liu et al., 2011] and Double Bit Quantization (DBQ) in
[Kong and L, 2012]. As shown in figure 1, HQ divides a
projection dimension into four regions and encodes each re-
gion by a 2-bit code 01, 00, 10 and 11 respectively. How-
ever, the neighborhood structure would be destroyed. For
instance, let’s consider two elements, one in the first region
and the other in the third region. Their Hamming distance
equals d(01,10) = 2, which is larger than the Hamming
distance between the first region and the fourth region , as
d(01,11) = 1, which is unreasonable as two closer elements
get a larger distance. Thus, Kong et al. proposed DBQ [Kong
and L, 2012] to divide the projection dimension into three re-
gions and encode them 01, 00 and 10 respectively. However,
DBQ does not maximize the use of code space as two bits can
represent four different values, leading to insufficient region
division of the space.

In this work, we propose a novel multi-bit quantization
method named Hamming Compatible Quantization (HCQ).
The proposed method HCQ attempts to maximize the use
of code space. In HQ and DBQ, each projection dimen-
sion is dealt with independently during quantization, ignoring
the neighborhood structure of raw data in Euclidean space.
Some data points may be actually far away although the dis-
tances in some individual projection dimensions are shorter.
Hence, HCQ introduces a distance error function to describe
the similarity preservation between Euclidean distance space
and Hamming distance space, and maximize the similar-
ity preservation. Moreover, a fast optimization algorithm is
proposed to significantly reduce the computation complexity
from O(n®) to O(n?), where n is the training data size. Ex-
periments have shown HCQ significantly outperform HQ and
DBQ. The main contributions are threefold:

(1) The proposed multi-bit quantization method with Ham-
ming distance metric is essential for hashing techniques to
solve the problem of fast ANN search. To the best of our
knowledge, this is the first work to explicitly formulate and
address the multi-bit quantization problem by incorporating
practically important Hamming distance metric towards ef-
fective and efficient hashing techniques.

(2) We formulate the multi-bit quantization as an opti-
mization problem by a minimizing distance error function,
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which elegantly preserves the capability of similarity metric
between Euclidean space and Hamming space by utilizing the
neighborhood structure of raw data. Moreover, a fast algo-
rithm is proposed to solve the optimization problem.

(3) Extensive experiments on benchmark datasets have
shown that our method significantly improves the perfor-
mance of state-of-the-art multi-bit quantization methods and
further advances the hashing technologies.

2 Related Work

Projection Methods. Most of existing hashing algorithms
fall into this category and can be divided into two groups: (1)
data-independent hashing, such as Locality Sensitive Hash-
ing (LSH) [Andoni and Indyk, 2006] and Shift Invariant Ker-
nel Hashing (SIKH) [Raginsky and Lazebnik, 2009], gen-
erates random projections independent of dataset. Data-
independent methods normally generate long binary codes
for satisfactory performance. (2) data-dependent hashing,
such as Spectral Hashing (SH) [Weiss et al.,, 2008], Prin-
ciple Component Analysis Hashing (PCAH) [Wang er al.,
2006], Semi-supervised Hashing (SSH) [Wang et al., 20101,
Iterative Quantization (ITQ) [Gong and Lazebnik, 2011]
and Restricted Boltzmann Machine (RBM) [Hinton et al.,
2006], aims to learn the projection functions from training
data. In general, data-dependent hashing outperforms data-
independent hashing. In this work, our focus is on the quanti-
zation stage, which is a valuable complement to the state-of-
the-art projection methods for hashing.

Quantization Methods. Besides the aforementioned
multi-bit quantization methods HQ and DBQ, previous works
have studied more sophisticated multi-bit strategies.

Kong et al. proposed a multi-bit quantization method
called Manhattan Hashing [Kong et al., 2012] (MH). MH
encodes each projection dimension into natural binary code
(NBC) and adopts Manhattan distance to measure the simi-
larity. For m-bits binary code, the range of Manhattan dis-
tance can be 0 to 2™ — 1, which is more wider than the
range of Hamming distance(0 to m), thereby yielding high
retrieval performance. Moran et al. further improved MH by
introducing an affinity matrix with F-measure criterion and
proposing Neighborhood Preserving Quantization [Moran et
al., 2013a] (NPQ). Likewise, Lee et al. present a Quadra-
Embedding [Lee et al., 2012] (QE) quantization methods by
adopting a specialized quadra’ distance.

The above methods have achieved significant performance
improvement over SBQ. However, those methods have fixed
the bits assignment of each projection dimension, without
allowing to vary the bit assignment across dimensions. To-
wards varying bit assignment, Moran et al. firstly proposed a
variable-bit quantization [Moran er al., 2013b] named VBQ
to allocate bits for different projection dimensions. Then,
Xiong et al. proposed an adaptive quantization [Xiong er al.,
2014] (AQ) strategy that assigns varying numbers of bits to
different dimensions based on their information content.

However, all these methods need to adopt a special distance
instead of the Hamming distance. Thus, retrieval speed would
be much slower. Figure 2 compares the computing proce-
dure of different distance. Given two codes A and B, only
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Figure 2: The procedure of computing different distance to
compare two 16 x 2 bits binary code A and B. Hamming
distance only involves 2 atomic instructions: 1 OR and 1
POPCNT. Quadra distance involves 8 operations: 3 OR, 3
AND, 1 PLUS and 1 MULT. Manhanttan Distance involves
31 operations: 16 SUBTRACTION, 15 PLUS.

2 atomic machine instructions are involved to compute their
Hamming distance. However, Quadra distance and Manhat-
tan distance involve 8 and 31 CPU operations respectively. At
64 bits code size, Hamming distance is at least 46 times faster
than Manhattan distance and 10 times faster than Quadra dis-
tance. Readers are referred to Section 4 for more details on
retrieval speed.

To the best of our knowledge, only two multi-bit quanti-
zation methods HQ and DBQ retain the Hamming distance.
Distinct from HQ and DBQ, our work proposes a more effi-
cient and effective quantization method by incorporating the
distance information of the original data points.

3 Hamming Compatible Quantization

Assume a projected vector Y € R is given. As our focus is
the quantization stage, we don’t consider how Y is generated.
Given Y (1 < u < ¢), we aim to figure out a mapping

b:R— {0,1} 1))
to quantize Y (*) into binary code b(Y (%)),

In our method, we set b = 2. That is, each element is
quantized into 2 bits. The reason is that the computation
complexity of threshold learning will be much heavier when
b increases. Moreover, setting b to more than 2 cannot in-
cur noticeable performance improvement. Sometimes it even
causes performance drop, which was shown in MH [Kong et
al., 2012]. Note that our related works, such as HQ [Liu ez
al., 2011], DBQ [Kong and L, 2012] and NPQ [Moran et al.,
2013al, all assign b to 2.

Let T = {T;|1 < i < n,T; € R?} denote the training
samples. The set of the u-th dimension projection of T is
expressed as

S ={si|]1 <i<n,s; € R}, 2)
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where s; = TZ-(“), 1 <4 < n. Without loss of generality, s;
(1 < ¢ < n) are supposed to be in order and then we have

$1 < 59 < ... < s, (if not, we rank 7" by the value of T(“)).

3.1 Formulation

Our goal is to find m — 1 boundaries ¢y, ca, ..., ¢yp—1 to di-
vide S into m = 2° = 4 groups, G = {s1,..., 8¢, }»
Go = {Sey41s s Scy bs eoos G = {Sc,, _1+1, -+, Sn} and as-
sign an index I; to each group G;, where 1 < i < m. Then,
any element x € G; will be quantized to I, i.e.

b(z) = I,z € G,. 3)

Here, I; is a binary code, and {I1, I5, ..., I} is a permu-
tation of the integers {0, 1,...,2° — 1}. The left and right
boundary of group G; are denoted as GI and GE, where
GE = min{j|s; € G;} and GE = maz{j|s; € G;}.

Given any s;, s; € S, the Euclidean distance between their
data points is

where d(.) denotes the Euclidean distance. After quantiza-
tion, the distance between s; and s; will be approximated as

H(s;,5;) = dn(b(si), b(s;)), 5)

where dj, (.) denotes the Hamming distance.

Considering the similarity preservation between Euclidean
distance space and Hamming distance space, a good hash-
ing method should hash close data points to close binary
codes. When two data points are faraway in Euclidean dis-
tance space, their corresponding hashing codes should get a
large distance in Hamming space as well [Andoni and Indyk,
2006]. An optimal quantization function b(.) is to minimize
the distance error introduced by the Hamming approximation:

Y xeSyeS

Here, ) is a constant scalar factor to balance the ranges of E
and H. The value of A will be discussed in section 4. We call
Eqn.6 as the distance error function.

There are two groups of variables in b(.), m —1 boundaries
{¢;]1 <i<m — 1} and m indices {I;]1 < i < m}. Solving
Eqn.6 consists of two steps: finding m — 1 boundaries {c;}
to divide S into m groups, and assigning a binary code I; to
each groups G; (1 < i < m). For simplicity, we firstly fix the
indices {I;} and then update {c;} to minimize the distance
error function subject to the given assignment.

3.2 Optimization

A naive method to update {c;} would be: enumerate all pos-
sible values of ¢1, ¢y and c3, and calculate the distance error
in Eqn.6. Those values yielding minimum distance error are
selected as the solution. However, this brute-force algorithm
has a O(n®) time complexity including O(n?) for enumerat-
ing ¢; and O(n?) for calculating the distance error function,
which is too heavy to solve a practical problem. The size
of training data is usually a few thousands or more. When
n = 10000, the order of magnitude of time complexity will
increase up to 1020, In practice, we even could not get the



answer for this magnitude after nearly 4 days running on a
Intel(R) Core(TM) i5 3470 CPU at 3.20GHz.

To update {c; } efficiently, we propose a very fast algorithm
by reducing redundant operations. Let F(i, j) denote the sum
of distance error between group G; and G, where

F(i,j) =Y Y (Blz,y) - AH(z,y)> ()
z€G; yeG;
Then, Eqn.6 can be rewritten as:
m m
glinZZF(i,j). ®)
S
Optimizing Eqn.6 is equivalent to optimize Eqn.8.
Next, we discuss how to efficiently calculate F(i, ). We
expand the square item in Eqn.7,

F(i,j)= Y > {E(x,y)+ NH(z,y)

z€G; yeG; (&)

In Eqn.9, H(z,y) is a constant and H(z,y) = dun(l;, I;).
Let A and B denote the sum of E2(z,y) and E(z, y) respec-
tively, where € G; and y € G;. Then Eqn.9 is represented
as

F(i,7) = A — 2X\oB + \20%|G4| |G, (10)

where o denotes the constant term dn (;, I;). In Eqn.10, we
can efficiently solve F(i, j) by directly reading the values of
A and B. As )\, 0, |G;| and |G| are all constant items, once
A and B are given, F(i,j) can be calculated in O(1) time.
Then, we define two function

i g i J
I, 7)) =YD Elsp,sg) = > > D(T;,Ty)
p=1qg=1 p=1q=1
i g i g an
K(i,j) =Y > E(sp,5) =D » DT, T,).
p=1qg=1 p=1qg=1

Leth = GZL — ].,’1"1 :Gﬁ,IQ = G]L — 1andr1 = Gf,and
we have

A =J(ry,r2) = Iy, r2) = I(re,lo) + Iy, 12). - (12)
Likewise, factor B can be modified as
B :K(’r‘l,?“g) —K(ll,rg) —K(Tl,lg) -‘rK(ll,lg). (13)

By pre-computing J(.) and K(.), the results of A and B can
be directly obtained from the look-up tables. F(i,j) can be
efficiently calculated in O(1) time. Algorithm 1 shows the
pseudo-code.

In our work, since {I;} is a permutations of
{00,01,10,11} and there are only in total 4! = 24 in-
stances, we just assign all permutations of {00,01, 10,11} to
I; and solve Eqn.8 for each assignment. The time complexity
is O(24(n%q + 16n?)) = O(n?q + n?), including O(n?q)
for computing J(.) and K(.), and O(16n?) for finding the
minimal value. We just enumerate 24 instances. Since q is
usually much smaller than n, the time complexity can be
considered as O(n?). The space complexity is O(n?), due to
n X n lookup tables J(.) and K(.).
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Algorithm 1 The fast algorithm to solve the distance error
function in Eqn.8.

Input: The training dataset S and 7', index I;(1 < ¢ < m),
factor .
Output: The solution ¢y, ¢o and c3.
Initialize the variable of minimal distance error min = oo.
Define By = {(4,7,k)|]1 <i < j <k <n,n=|s|} and
By = {(i,j)|1 <i,j <22}
Compute the results of J(¢, 5) and K(4,7), 0 < 7,5 <n.
for each (¢}, c5,¢5) € By do
Initialize value < 0, G1 + {sg|l < k < i}, Go +
{sklef < k < b}, G < {silcs < k < ¢i} and
Gy + {sklch <k <n}.
for each (i, j) € Bz do
g = dh(IZ,I])
ll :GiL—l,Tl :Gf,lngf—landrg :G;%
A = J(Tl,TQ) — J(ll,’l“g) — J(T1,l2) +J(ll,lg).
B = K(T’l,’l"g) — K(ll,Tg) — K(T’l,lg) —+ K(ll, lg)
F = A — 2)\0’B + )\202‘G1‘|Gj|
value < value + F.
end for
if value < min then
min < value.
(c1,c2,3) = (cf, 3, C§)
end if
end for

4 Experiment

4.1 Dataset and Evaluation Protocol

Extensive experiments were carried out over three widely
used retrieval benchmark datasets, LabelMe22K [Torralba
et al., 2008], CIFAR-10 [Krizhevsky, 2009] and NUS-
WIDE [Chua et al., 2009]. The CIFAR-10 dataset contains
60,000 images of size 32x32 and has been categorized into
10 classes. The LabelMe22K dataset contains 22,019 im-
ages. As setup in [Kong and L, 2012], [Kong et al., 2012]
and [Moran et al., 2013al, we represent each image with a
512 dimensional gray-scale GIST descriptor [Aude and Tor-
ralba, 2001]. The NUS-WIDE dataset contains 269,648 im-
ages. We use the 225-D block-wise color feature to represent
each image.

We report the ANN search results using Euclidean near-
est neighbours as the ground-truth. Thresholding is applied
to determine whether a returned database image is true posi-
tive or not. Following [Kong and L, 2012; Kong et al., 2012;
Moranet al., 2013a; 2013b], a threshold is set as the average
distance between each of randomly selected 100 data points
and their returned the 50th nearest neighbours. We randomly
select 1000 images as queries, and the remaining images as
reference database images. We use mean Average Precision
(mAP) to evaluate the search accuracy. We repeated the re-
trieval experiments by 10 times. In addition, we measure
the search time on an Intel(R) Core(TM) i5 3470 CPU at
3.20GHz with a single thread.
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Figure 3: Impact of parameter A over Lableme-22K dataset
at code size 32 and 64. ITQ projection is used.

4.2 Baselines

We choose five representative projection methods, ITQ [Gong
and Lazebnik, 2011], SH [Weiss et al., 2008], PCAH [Wang
et al., 2006], LSH [Andoni and Indyk, 2006] and SIKH [Ra-
ginsky and Lazebnik, 2009], and combine them with differ-
ent quantization methods for hashing. Note that ITQ, SH and
PCAH are data-dependent methods, while LSH and SIKH are
data-independent methods.

By leveraging the aforementioned projection methods, we
study the ANN search accuracy of our method versus state-
of-the-art single/multiple bit quantization schemes:

e SBQ: single bit quantization.

e HQ [Liu er al., 2011]: hierarchical hashing uses k-means
clustering to divide each dimension into 4 regions, and

encodes the regions as 01, 00, 10, 11 from left to right.

DBQ [Kong and L, 2012]: double-bit quantization with
01, 00, 10 from left to right.

e HCQ: the proposed Hamming Compatible Quantization.

To the best of our knowledge, only two multi-bit quantiza-
tion methods HQ and DBQ retaining the Hamming distance
were reported and we select both of them as baselines. We
compare the search time cost of the proposed quantization
method with Hamming distance and other typical quantiza-
tion algorithms with Non-Hamming distance, i.e., MH [Kong
et al., 2012] and NPQ [Moran et al., 2013a] with Manhat-
tan distance, and QE [Lee et al., 2012] with Quadra distance.
In our experiments, we also compare with Manhattan Hash-
ing [Kong et al., 2012] which adopts Manhattan distance.

4.3 Impact of parameters

Training Sample n. Table 1 shows the impact of the training
sample size n for our HCQ. Learning over a small training
set (say 1000) has been sufficient for stable and promising
performance. More training instances won’t incur noticeable
improvements while fewer instances may degrade the perfor-
mance. In practice, we select 1000 images from the database
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Training Sample n

CodeSize | »00 500 1000 2000 5000
32bits [ 0125 0203 0346 0344 0350
64bits | 0235 0323 0471 0473  0.469
128 bits | 0357 0465 0.608 0612 0611
256 bits | 0398 0512 0641 0.637 0.639

Table 1: Impact of the training sample size n for HCQ. We
adopt the ITQ projection, and evaluate the retrieval perfor-
mance with different n at code size 32, 64, 128 and 256, re-
spectively.

#bits 32 64 128 256
Hamming Distance | 0.15 023 039  0.81
Manhattan Distance | 5.93 10.70 18.81 37.52

Quadra Distance 145 253 497 10.51

Table 2: The retrieval time cost (s) on LableMe22K with dif-
ferent distance metric, including Hamming distance, Manhat-
tan distance and Quadra distance.

to learn the quantization boundaries. The overall training
stage is very efficient and can be finished in just five minutes.

Parameter \. Figure 3 shows the effect of scalar constant
factor A\ in Eq. 6 at code size of 32 bits and 64 bits on La-
belMe22K dataset. As one can see, for both 32 bits and 64
bits, there is significantly search performance drop (in mAP)
when A\ becomes smaller (close to 0) or larger (close to 1).
Similar trends have been observed at code size 128 bits and
256 bits. It is observed that the optimal A increases with the
code size, e.g., the best mAP is achieved when A = 0.6 at 32
bits and A = 0.7 at 64 bits. This is reasonable since the range
of Hamming distance increases with the code size, thereby we
should enlarge A to make sure that the Euclidean distance and
the Hamming distance have comparable order of magnitude.
In the following experiments, we set A = 0.6,0.7,0.8,0.9 at
code size 32, 64, 128, 256, respectively.

4.4 Performance

Comparison with State-of-the-art. Figure 4, figure 5 and
figure 6 list the search accuracy mAP when combining dif-
ferent quantization methods and different projection methods
on dataset LabelMe22K, CIFAR-10 and NUS-WIDE respec-
tively. When combining SBQ with different projection meth-
ods, we have the original baseline algorithms (i.e., ITQ, SH,
PCA, LSH and SIKH). For multi-bit quantization HH, DBQ
and HCQ, we use double bits to encode each projected di-
mension.

For fair comparison, HCQ firstly projects data points into
¢/2 dimension at code size ¢, which is also applied to other
two multi-bit quantization methods HQ and DBQ. Experi-
ment results show that HCQ significantly outperforms SBQ
although only half of projection dimensions are used. This
has validated the importance of the quantization stage to pro-
mote hashing performance.

As listed in figure 4, figure 5 and figure 6, the proposed
HCQ consistently outperforms SBQ for all settings even at
code size 32. At small code size, HQ and DBQ perform worse
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(a) LabelMe-22K 32-bit (b) LabelMe-22K 64-bit

ITQ SH PCAH LSH SIKH ITQ SH PCAH LSH SIKH

(c) LabelMe-22K 128-bit (d) LabelMe-22K 256-bit

Figure 4: The results of mAP on LableMe-22K dataset at code size of 32 bits, 64 bits, 128 bits and 256 bits.

ESBQ ®HQ mDBQ mHCQ ESBQ ®HQ mDBQ mHCQ

ESBQ ®HQ mDBQ mHCQ ESBQ mHQ mDBQ mHCQ

SH PCAH LSH SIKH

SH PCAH LSH SIKH

ITQ ITQ

(a) CIFAR-10 32-bit (b) CIFAR-10 64-bit

ITQ SH PCAH LSH SIKH ITQ SH PCAH LSH SIKH

(c) CIFAR-10 128-bit (d) CIFAR-10 256-bit

Figure 5: The results of mAP on CIFAR-10 dataset at code size of 32 bits, 64 bits, 128 bits and 256 bits.

#bits 32 64 128
Method | MH HCQ | MH HCQ | MH HCQ
mAP | 0354 0.346 | 0.488 0.471 | 0.591 0.608
Time(s) | 593 0.15 | 10.70 0.23 | 18.81 0.39
Table 3: Comparison with Manhattan Hashing on La-

belMe22K dataset at code size 32, 64 and 128.

than SBQ in some cases (e.g., HQ+LSH and DBQ+LSH per-
form worse than SBQ+LSH at 32 bits on LabelMe22K and
CIFAR-10), while HCQ outperforms SBQ expect just one
point (i.e., HCQ+LSH at 32 bits on LabelMe22K dataset). At
code size 32, data points are projected into 16 dimension and
lots of information would be lost. But HCQ still outperforms
SBQ. This demonstrates the effectiveness of HCQ.

Referring to the listed results, HCQ achieves much better
performance than other two multi-bit quantization methods
HQ and DBQ. The performance gap becomes larger as the
code size increases. At 32 bits, HCQ is about +9% mAP bet-
ter than HQ and +4% better than DBQ on LabelMe22K with
ITQ projection. While, at 256 bits, HCQ is +21% mAP bet-
ter than HQ and 14% mAP better than DBQ on LabelMe22K
with ITQ projection. At 256 bits, HCQ is even +25% mAP
better than SBQ on LabelMe22K with ITQ projection(i.e.,
64.11% vs 38.46%). Considerable mAP improvements are
yielded over CIFAR-10 and NUS-WIDE as well. The perfor-
mance gain from quantization is significant to promote hash-
ing techniques.

Retrieval Speed. Table 2 lists the search time on La-
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belMe22K dataset using different metrics including Manhat-
tan distance in MH [Kong et al., 2012] and NPQ [Moran et
al., 2013a] and Quadra distance in QE [Lee et al., 2012]. The
Hamming distance computation is much faster than others at
the same code size. For instance, at 32 bits, Hamming dis-
tance is about 40 times faster than Manhanttan distance and
10 times faster than Quadra distance. More importantly, the
search speedup increases with the code size. This is consis-
tent with the theoretical analysis in Section 2.

Comparison with Manhattan Hashing. We also compare
HCQ with another multi-bit quantization method Manhattan
Hashing (MH) which adopts Manhattan distance. Note that
Manhattan distance has natural advantages over Hamming
distance due to much wider distance range, but Manhattan
distance incurs more computation complexity. In our experi-
ments, MH firstly projects data points into ¢/2 dimension and
then quantizes each of them into 2 bits at code size c. As
listed in Table 3, HCQ achieves comparable retrieval perfor-
mance with MH, and even better than MH at code size 128.
However, the proposed HCQ is with more than 40 times faster
retrieval speed than MH. At code size 128, HCQ even yields
slightly better results than MH. The performance advantages
have again shown that quantization is crucial for improving
hashing techniques.

5 Conclusion

Quantization is crucial for performance, and Hamming dis-
tance metric contributes to fast retrieval speed. The proposed
Hamming Compatibility Quantization not only benefits the
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Figure 6: The results of mAP on NUS-WIDE dataset at code size of 32 bits, 64 bits, 96 bits and 128 bits.

multi-bit quantization but also supports highly efficient Ham-
ming distance metric. HCQ has significantly improved the
performance of state-of-the-art hashing methods.
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