
Compressed Architecture Search Compression Results
v Goal: automatically search for a small and accurate network

architecture based on a given large network architecture

v Bottleneck: the need to repeatedly evaluate different architectures

v Proposal: a learnable embedding space over the domain of network
architectures that can be used to generate a priority ordering of
architectures for evaluation

Architecture Visualization

Learnable Embedding Space for Efficient Neural Architecture Compression
Shengcao Cao*, Xiaofang Wang* and Kris M. Kitani

Peking University, Carnegie Mellon University

Formulation

Domain of Architectures

Reward Function

Compression RatioValidation Accuracy

Search with Bayesian Optimization (BO)

v Gaussian Process (GP) Prior:

v At architecture search step !:

v Select the next architecture for evaluation

How to define the kernel function?

Mean Function Kernel Function

Posterior distribution

Maximize the
acquisition function

Learnable Embedding Space

Objective Function

RBF Kernel

Architecture Embedding Hidden
States

Bi-
LSTM

Bi-
LSTM

Bi-
LSTM

ℎ#$% ℎ# ℎ#&%

Layer
' − 1

Layer
'

Layer
' + 1

Average Pooling + Normalization

Bi-LSTM

Layer
Info

1. Layer Type: a one-hot vector
2. Layer Attributes: filter size, stride …
3. Layer Connectivity

Posterior Probability

At architecture step ', we have
' evaluated architectures.

Learn a + such that the function ,
is consistent with the GP prior.

Published as a conference paper at ICLR 2019

Algorithm 1 Neural Architecture Search with Bayesian Optimization
Input: Number of steps T . Number of kernels K. Teacher network xteacher.
Randomly sample K architectures x1

1, . . . , x
K

1 from the search space defined based on xteacher.
Initialize the set of evaluated architectures D = ;.
for t = 1, . . . , T do

Evaluate the K architectures x1
t

, . . . , x

K

t

.
D = D [{x1

t

, . . . , x

K

t

}.
for k = 1, . . . ,K do

Randomly initialize the weights of kernel k, denoted as ✓k.
Randomly sample a subset of D, denoted as Dk.
Learn ✓

k on D

k by minimizing the negative log posterior probability.
Compute the posterior distribution conditioned on the architectures in D

k

with kernel k.
Maximize the acquisition function and denote the solution as xk

t+1.
end for

end for

Return the best architecture in D as the solution.

1 EXPERIMENTS

We first extensively evaluate our algorithm with different teacher architectures and datasets. We then
compare the automatically found compressed architectures to the state-of-the-art manually-designed
compact architecture, ShuffleNet (Zhang et al., 2018). We also evaluate the transfer performance of
the learned embedding space and kernel. We perform ablation study to understand how the number
of kernels K and other design choices in our search algorithm influence the performance. Due to
space constraints, the ablation study is included in Appendix ??.

Table 1: Summary of Compression Results.

CIFAR-100 Accuracy #Params Ratio Times f(x)
VGG-19 Teacher 73.71% 20.09M - - -

Random Search 68.17% 2.83M 0.8593 8.04⇥ 0.9046
±1.28% ±1.05M ±0.0525 ±3.78⇥ ±0.0074

Ours 71.41% 2.61M 0.8699 7.99⇥ 0.9518

±0.75% ±0.61M ±0.0306 ±1.99⇥ ±0.0158

ResNet-18 Teacher 78.68% 11.22M - - -
Random Search 69.86% 1.26M 0.8878 10.10⇥ 0.8752

±1.90% ±0.54M ±0.0477 ±4.33⇥ ±0.0137
N2N 68.01% 2.42M 0.7845 4.64⇥ 0.8242
Ours 73.83% 1.87M 0.8335 6.01⇥ 0.9123

±1.11% ±0.08M ±0.0073 ±0.26⇥ ±0.0151

ResNet-34 Teacher 78.71% 21.33M - - -
Random Search 72.33% 3.61M 0.8308 5.95⇥ 0.8924

±1.53% ±0.35M ±0.0162 ±0.60⇥ ±0.0154
N2N - removal 70.11% 4.25M 0.8008 5.02⇥ 0.8554
Ours - removal 74.05% 3.18M 0.8508 6.88⇥ 0.9192

±0.52% ±0.65M ±0.0307 ±1.31⇥ ±0.0033
Ours 73.68% 2.36M 0.8895 9.08⇥ 0.9246

±0.57% ±0.15M ±0.0069 ±0.59⇥ ±0.0076

ShuffleNet Teacher 71.14% 1.06M - - -
Random Search 64.75% 0.18M 0.8264 6.37⇥ 0.8803

±2.15% ±0.06M ±0.0588 ±2.68⇥ ±0.0152
Ours 68.45% 0.23M 0.7855 4.74⇥ 0.9171

±1.38% ±0.04M ±0.0337 ±0.78⇥ ±0.0088

2

Published as a conference paper at ICLR 2019

Table 2: Comparison to ShuffleNet on CIFAR-100.

Teacher Accuracy #Params Teacher Accuracy #Params
Ours VGG-19 71.41% 2.61M ResNet-18 73.83% 1.87M

ShuffleNet 68.45% 0.23M ResNet-34 73.68% 2.36M
Configuration Accuracy #Params Configuration Accuracy #Params

ShuffleNet 0.5⇥ (g = 1) 67.71% 0.26M 1.5⇥ (g = 1) 72.43% 2.09M
0.5⇥ (g = 2) 67.54% 0.27M 1.5⇥ (g = 2) 71.41% 2.07M
0.5⇥ (g = 3) 67.23% 0.27M 1.5⇥ (g = 3) 71.05% 2.03M
0.5⇥ (g = 4) 66.83% 0.27M 1.5⇥ (g = 4) 71.86% 1.99M
0.5⇥ (g = 8) 66.74% 0.31M 1.5⇥ (g = 8) 71.04% 2.08M

Table 3: Summary of Kernel Transfer Results.

Method Accuracy Ratio f(x) Method Accuracy Ratio f(x)
(a) ! (b) K = 1 93.13% 0.8717 0.9584 N2N on (b) 92.35% 0.9020 0.9570

K = 8 92.80% 0.9627 0.9697 Ours on (b) 92.70% 0.9379 0.9660
(a) ! (c) K = 1 89.92% 0.9793 0.9571 N2N on (c) 91.64% 0.9513 0.9735

K = 8 92.79% 0.9671 0.9870 Ours on (c) 92.27% 0.9595 0.9809
(a) ! (d) K = 1 68.77% 0.9393 0.8708 N2N on (d) 68.01% 0.7845 0.8242

K = 8 70.93% 0.8586 0.8835 Ours on (d) 73.83% 0.8335 0.9123

CIFAR-100 and the results are summarized in Table 2. For ’Ours’ in Table 2, we use the mean
results of 3 runs of our method. In Table 2, VGG-19, ResNet-18, ResNet-34 and ShuffleNet refer
to the compressed architectures found by our algorithm based on the corresponding teacher network
and do not refer to the original architecture indicated by the name. The teacher ShuffleNet used in
the experiments is ‘ShuffleNet 1⇥(g = 2)’ as mentioned above. ‘0.5⇥(g = 1)’ and so on in Table 2
refer to different configurations of ShuffleNet and we show the accuracy of these original ShuffleNet
in the table. The compressed architectures found based on ResNet-18 and ResNet-34 have a similar
number of parameters with ShuffleNet 1.5⇥ but they can all achieve much higher accuracy than
ShuffleNet 1.5⇥. The compressed architecture found based on ShuffleNet 1 ⇥ (g = 2) can obtain
higher accuracy than ShuffleNet 0.5⇥ while using a similar number of parameters.

1.3 KERNEL TRANSFER

We now study the transferability of the learned embedding space or the learned kernel. We would
like to know to what extent a kernel learned in one setting can be generalized to a new setting.
To be more specific about the kernel transfer, we first learn one kernel or multiple kernels in the
source setting. Then we maximize the acquisition function within the search space in the target
setting and the acquisition function is computed based on the kernel learned in the source setting.
The maximizer of the acquisition function is a compressed architecture for the target setting. We
evaluate this architecture in the target setting and compare it with the architecture found by applying
algorithms directly to the target setting.

We consider the following four settings: (a) ResNet-18 on CIFAR-10, (b) ResNet-34 on CIFAR-10,
(c) VGG-19 on CIFAR-10 and (d) ResNet-18 on CIFAR-100. ‘ResNet-18 on CIFAR-10’ refers
to searching for a compressed architecture with ResNet-18 as the teacher network for the dataset
CIFAR-10 and so on. We first run our search algorithm in setting (a) and transfer the learned kernel
to setting (b), (c) and (d) respectively to see how much the learned kernel can transfer to a larger
teacher network in the same architecture family (this means a larger search space), a different archi-
tecture family (this means a totally different search space) or a harder dataset.

We learn K kernels in the source setting (a) and we transfer all the K kernels to the target setting,
which will result in K compressed architectures for the target setting. We report the best one among
the K architectures. We have tried K = 1 and K = 8 and the results are shown in Table 3. In all the
three transfer scenarios, the learned kernel in the source setting (a) can help find reasonably good

4

Algorithm Sketch Search Space
v Layer Removal

v Layer Shrinkage

v Add Skip Connections

Published as a conference paper at ICLR 2019

Algorithm 1 Neural Architecture Search with Bayesian Optimization
Input: Number of steps T . Number of kernels K. Teacher network xteacher.
Randomly sample K architectures x1

1, . . . , x
K

1 from the search space defined based on xteacher.
Initialize the set of evaluated architectures D = ;.
for t = 1, . . . , T do

Evaluate the K architectures x1
t

, . . . , x

K

t

.
D = D [{x1

t

, . . . , x

K

t

}.
for k = 1, . . . ,K do

Randomly initialize the weights of kernel k, denoted as ✓k.
Randomly sample a subset of D, denoted as Dk.
Learn ✓

k on D

k by minimizing the negative log posterior probability.
Compute the posterior distribution conditioned on the architectures in D

k

with kernel k.
Maximize the acquisition function and denote the solution as xk

t+1.
end for

end for

Return the best architecture in D as the solution.

1 EXPERIMENTS

We first extensively evaluate our algorithm with different teacher architectures and datasets. We then
compare the automatically found compressed architectures to the state-of-the-art manually-designed
compact architecture, ShuffleNet (Zhang et al., 2018). We also evaluate the transfer performance of
the learned embedding space and kernel. We perform ablation study to understand how the number
of kernels K and other design choices in our search algorithm influence the performance. Due to
space constraints, the ablation study is included in Appendix ??.

Table 1: Summary of Compression Results.

CIFAR-100 Accuracy #Params Ratio Times f(x)
VGG-19 Teacher 73.71% 20.09M - - -

Random Search 68.17% 2.83M 0.8593 8.04⇥ 0.9046
±1.28% ±1.05M ±0.0525 ±3.78⇥ ±0.0074

Ours 71.41% 2.61M 0.8699 7.99⇥ 0.9518

±0.75% ±0.61M ±0.0306 ±1.99⇥ ±0.0158

ResNet-18 Teacher 78.68% 11.22M - - -
Random Search 69.86% 1.26M 0.8878 10.10⇥ 0.8752

±1.90% ±0.54M ±0.0477 ±4.33⇥ ±0.0137
N2N 68.01% 2.42M 0.7845 4.64⇥ 0.8242
Ours 73.83% 1.87M 0.8335 6.01⇥ 0.9123

±1.11% ±0.08M ±0.0073 ±0.26⇥ ±0.0151

ResNet-34 Teacher 78.71% 21.33M - - -
Random Search 72.33% 3.61M 0.8308 5.95⇥ 0.8924

±1.53% ±0.35M ±0.0162 ±0.60⇥ ±0.0154
N2N - removal 70.11% 4.25M 0.8008 5.02⇥ 0.8554
Ours - removal 74.05% 3.18M 0.8508 6.88⇥ 0.9192

±0.52% ±0.65M ±0.0307 ±1.31⇥ ±0.0033
Ours 73.68% 2.36M 0.8895 9.08⇥ 0.9246

±0.57% ±0.15M ±0.0069 ±0.59⇥ ±0.0076

ShuffleNet Teacher 71.14% 1.06M - - -
Random Search 64.75% 0.18M 0.8264 6.37⇥ 0.8803

±2.15% ±0.06M ±0.0588 ±2.68⇥ ±0.0152
Ours 68.45% 0.23M 0.7855 4.74⇥ 0.9171

±1.38% ±0.04M ±0.0337 ±0.78⇥ ±0.0088

2

Code

Comparison to ShuffleNet [Zhang et al.]

Compression Results on CIFAR-100

Published as a conference paper at ICLR 2019

Table 1: Comparison between different objective functions. ‘Euclidean’ refers to regressing the
function value with a Euclidean loss. ‘Marginal’ refers to maximizing the log marginal likelihood.
‘Posterior’ is our choice and refers to maximizing the predictive posterior probability.

CIFAR-100 Accuracy #Params Ratio Times f(x)
VGG-19 Euclidean 70.95% 2.47M 0.8771 9.62⇥ 0.9453

±1.07% ±1.26M ±0.0627 ±4.55⇥ ±0.0092
Marginal 69.90% 1.50M 0.9254 16.14⇥ 0.9422

±0.69% ±0.68M ±0.3382 ±9.22⇥ ±0.0071
Posterior 71.41% 2.61M 0.8699 7.99⇥ 0.9518

±0.75% ±0.61M ±0.0306 ±1.99⇥ ±0.0158

ResNet-18 Euclidean 71.67% 1.62M 0.856 7.07⇥ 0.8917
±0.67% ±0.27M ±0.0243 ±1.09⇥ ±0.0137

Marginal 72.80% 1.72M 0.8467 6.57⇥ 0.9033
±1.11% ±0.18M ±0.0160 ±0.67⇥ ±0.0094

Posterior 73.83% 1.87M 0.8335 6.01⇥ 0.9123

±1.11% ±0.08M ±0.0073 ±0.26⇥ ±0.0151

ResNet-34 Euclidean 72.87% 2.49M 0.8834 8.90⇥ 0.9127
±1.11% ±0.60M ±0.2814 ±2.04⇥ ±0.0103

Marginal 73.11% 3.34M 0.8435 6.47⇥ 0.9059
±0.57% ±0.48M ±0.0224 ±0.89⇥ ±0.0134

Posterior 73.68% 2.36M 0.8895 9.08⇥ 0.9246

±0.57% ±0.15M ±0.0069 ±0.59⇥ ±0.0076

LEARNABLE EMBEDDING SPACE FOR
EFFICIENT NEURAL ARCHITECTURE COMPRESSION

Shengcao Cao

⇤

School of EECS
Peking University
Beijing, 100871, China
caoshengcao@pku.edu.cn

Xiaofang Wang

⇤
& Kris M. Kitani

The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
{xiaofan2,kkitani}@cs.cmu.edu

ABSTRACT

We propose a method to incrementally learn an embedding space over the do-
main of network architectures, to enable the careful selection of architectures
for evaluation during compressed architecture search. Given a teacher network,
we search for a compressed network architecture by using Bayesian Optimiza-
tion (BO) with a kernel function defined over our proposed embedding space
to select architectures for evaluation. We demonstrate that our search algorithm
can significantly outperform various baseline methods, such as random search
and reinforcement learning (Ashok et al., 2018). The compressed architectures
found by our method are also better than the state-of-the-art manually-designed
compact architecture ShuffleNet (Zhang et al., 2018). We also demonstrate that
the learned embedding space can be transferred to new settings for architec-
ture search, such as a larger teacher network or a teacher network in a differ-
ent architecture family, without any training. Code is publicly available here:
https://github.com/Friedrich1006/ESNAC.

⇤indicates equal contribution.

1

Choice of the Objective Function

#Params: 20.09M

CIFAR-10: 93.91%

CIFAR-100: 73.71%
#Params: 0.99M

Accuracy: 91.35%
20.3× Smaller

#Params: 3.07M

Accuracy: 71.64%
6.5× Smaller

Teacher: VGG-19

Teacher: ResNet-18

CONV
BN
RELU
OTHRES
IDENTITY
(REMOVED)

#Params: 11.22M

CIFAR-10: 95.24%

CIFAR-100: 78.68% #Params: 0.54M
Accuracy: 92.64%
20.8× Smaller

#Params: 1.26M

Accuracy: 71.91%
8.9× SmallerCONV

BN
RELU
OTHRES
IDENTITY
(REMOVED)

Compressed on CIFAR-10 Compressed on CIFAR-100

Compressed on CIFAR-10 Compressed on CIFAR-100

